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RESEARCH MEMORANDUM

LIFT, DRAG, AND PITCHING MOMENT OF LOW-ASPECT-RATIO WINGS
AT SUBSONIC AND SUPERSONIC SPEEDS — TRIANGULAR
WING OF ASPECT RATIO Lkt WITH NACA 0005-63
THICKNESS DISTRIBUTION, CAMBERED AND
TWISTED FOR TRAFEZOIDAT. SPAN
LOAD DISTRIBUTION

By E. Ray Phelps and Willard G. Smith

SUMMARY

A wing-body combination having a triangular wing of aspect ratio 4
with NACA 0005—63 thickness distribution in streamwise planes, and cam—
bered and twisted for a trapezoidal span lcad distribution has been
investigated at both subsonic and supersonic Mach mumbers. The 1ift,
drag, and pitching moment of the model are presented for Mach numbers
from 0.25 to 0.96 and 1.20 to 1.70 at a Reynolds number of 1.5 million.
The variations of the characteristics with Reynolds number are also
shown for several Mach numbers.

INTRODUCTION

A research program is in progress at the Ames Aeronautical Isbora—
tory to ascertain experimentally at subsonic and supersonic Mach num—
bers the characteristics of wings. of interest in the design of hlgh-
speed fighter airplanes., Variations in plan form, twist, camber, and
thickness are being investigated. This report is one of a series per—
taining to this program and presents results of tests of & wing-body
combination having & triangular wing of aspect ratio 4 with NACA 0005-63
thickness dlstribution in streamwise planes and canmbered and twisted for
e trapezoldal spen load dlstribution, Results of other investigations
in this program are presented in references 1, 2, and 3. As in these
references, the data herein are presented without analysis to expedite
publicgtion.,
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NOTATION

wing span, feet

.mean aerodynamic chord<—7-———— s Ffeet

proJected local wing chord, feet

length of body including portion removed to accommodate sting,
inches

lift-drag ratio

meaximm lift—-drag ratio

Ma.ch number

free—stream dynamic pressure, pounds per square foot
Reynolds number based on the mean aerodynamic chord
radius of body, inches

maximum body radius, inches

total projected wing area, including area formed by extending
leading and trailing edges to plane of symmetry, square feet

distance from wing leading edge in wing reference plane, inches

- longitudinal distance from nose of bhody, inches

verticel dlstence from wing reference plane, inches
distance perpendicular to plane of symmetry, feet

angle of attack of body axis, degrees

drag coefficient <§-£E-§_>

117t coefficlent < lift)

QNFITENTTAL
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Cm pitching-moment coefficient referred to quarter point of mean
aerodynamic chord <pitching_momen‘b>
aSc

?d—, slope of the 1ift curve measured at zero 1ift, per degree
ac,
_— 8lope of the pltching-moment curve measured at zero 1ift
dcy,

Subscripts
1) upper surface of wing
L lower surface of wing

APPARATUS

Wind Tunnel and Equipment

The experimental investigatlon was conducted in the Ames 12-foot
Pressure wind tumnel and in the Ames 6— by 6—foot supersonic wind tun—
nel. In each wind tunnel, the Mach number can be wvaried continuocusly
and the stagnation pressure can be regulated to maintain a given test
Reynolds number. The air in these tunnels is dried to prevent formation
of condensation shocks. TFurther information on these wind tunnels is
presented in references L4t and 5.

The model was sting mounted in each tunnel, the diameter of the
sting being about 82 percent of the diameter of the body base. The
pitch plane of the model support was vertical in the 12—Foot wind tun—
nel and horizontal in the 6~ by 6—Foot wind tunnel. A balance mounted
on the sting support and enclosed within the body of the model was used
to measure the aerodynamic forces and moments on the model., The balance
was a 2—1/2—inch, four—component, strain—gage balance of the type
described in reference 6.

Model

A photograph of the model mounted in the Ames 12—Ffoot pressure wind
tunnel is shown in figure 1. Pla.n a.nﬂ. front views of the model and
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certain model dimensions are given in figure 2. Other lmportant geomet—
ric characteristics of the model are as follows:

Wing . —
AsPect TBEL0 &+ v v 4 4t . e e e e e e e s e e e e e e 1+
Taper ratio . . Y .
Thickness distribution (strea.mwise) « e o s o u NACA 0005—63
Total area, S, square feet . . + &« v ¢ ¢ ¢ s ¢ o o » o« 2.007
Mean serodynamic chord, T, feet . « v « e« + o o & « o« O. 9’+1P
Incidence, degrees . . . . . .

Distance, wing reference pla.ne 'bo 'bod.y axis, feet ., . 0

Body
Fineness ratioc (based on length 1; fig. 2) . . . . 12,5

Cross—section shape . . . . . e ¢ ¢« s« & o s o « » Clrcular
Maximum. cross~sectional area, squa.re feet . . . .. 0.1026
Ratlio of maximm cross-sectional area to wing area . 0.0509

The twist and camber of the present wing were derived from a theo—
retical equation satlisfying the linearized su;pérsonic potential flow
equation and giving the shape of a surface for a uniform pressure dlstrl-—
bution. (See reference 7.) At the design Mach number of 1.15 and design
1ift coefficient of 0.35 the span load distribution was trapezoldal,
belng constant to 62.5 percent of the semispan and varying linearly from
there to zero at the tip. The section coordinates for this wing are given
in table I.

The wing was constructed of salld steel. The body spar was also
steel and covered wlth aluminum to form the body contours. The surfaces
of the wing and body were polished smooth.

TESTS AND PROCEDURE
Range of Test Variables

The cheracteristics of the model (as a function of angle of attack)
were investlgated for a range of Mach numbers fram 0.25 to 0.96 in the
Ames 12—foot pressure wind tunnel and from 1.20 to 1.70 in the Ames
6— by 6-foot supersonic wind tunnel.  The major portion of the data was
obtained at a Reynolds number of 1.5 million, Data were also obtained
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for Reynolds number up to 8.0 million at & Mach number of 0,25 and up to
a Reynolds number of 3.0 million at supersonic Mach numbers.

Reduction of Data

The test data have been reduced to standsrd NACA coefficient form,
Factors which could affect the accuracy of these results and the correc—
tions applied are discussed in the following paragraphs. ]

Tunnel-wall interference.— Corrections to the subsonic results for
the induced effects of the tunnel walls resulting from 1ift on the model
were made according to the methods of reference 8., The numerical values
of these corrections (which were added to the uncorrected data) were, for
the results from the 12-foot wind tunnel:

Ax = 0.1k CYf,

2
ACp = 0.0023 Cr,

No corrections were made to the pltching—moment coefficients.

The effects of comstriction of the flow at subsonic speeds by the
tunnel walls were accounted for by the methed of reference 9. This cor—
rection was calculated for comditions at zerc angle of attack and was
applied throughout the angle—of-attack range. At a Mach muber of 0.96
in the 12-foot wind tunnel, this correction amounted to a l—percent
increase in the Mach number over that determined from & calibration of
the wind tunnel without a model in place. '

For the tests at supersonic speeds, the reflection from the tunnel
walls of the Mach wave originating at the noss of the body did not cross
the model. No correctioms were required, therefore, for tunnel-wall
effects, :

Stream wvariations.— Calibration of the 12—Ffoot wind tunnel has shown
that In the test reglon the stream Inclination determined from tests of
& wing spanning the tunnel, with the support system at 0° angle of attack,
is less than 0.08°., The variation of static pressure is less than 0.2
percent of the dynamic pressure. No correction for the effect of these
stream variations was made.

A purvey of the ailr stream in the 6— by 6—Foot wind tunnel at super—
sonlc speeds (reference 5) has shown a stream curvature only in the yaw
plane of the model. The effects of this curvature on the measured char—
acteristics of the present model are not known, but are believed to be
small as Judged by the results of reference 10, The survey also
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indicated that there 1s a statlc-—pressure variation in the test section
of sufficient magnitude to affect the drag resulits. A correction was
added to the measured drag coefficient, therefors, to account for the
longitudinal buoyancy caused by this static—pressure wvariation. This
correction varied from as much as —0.0016 at a Mach mumber of 1.20 to
+0,0016 at a Mach number of 1.70.

Support interference.,— At subsonic speeds, the effects of support
interference on the aerocdynamic characteristlcs of the model are not
known. For the present tailless model, it is believed that such effects
consisted primarily of a change in the pressure at the base of the medel.
In an effort to correct at least partlally for this support interference,
the base pressure was measured and the dreg data were adjusted to corre-—
spond to a base pressure equal to the static pressure of the free stream.

At supersonic speeds, the effects of support interference of a body-—
sting configuration similar to that of the present model are shown by
reference 11 to be confined to a chenge in base pressure, The previ—
ously mentioned adjustment of the drag for base pressure, therefore,
was applied at supersonic speeds.

Errors introduced by support system.— Clearances between moving

parts in the support system in the 6~ by 6—~foot supersonic wind tunmel
under certain conditione permitted the angle of attack to vary as muich
as 0.3° with no change in the angle—of-attack indicator., The clearances
were discovered after inspection of the data of reference 3 showed that
the drag coefficlents were not the same at positive and negative 1ift
coefficients, However, calibration of the angle—of-ettack indicator
during the present investigation, as well as that of reference 3, had
been made in such a manner that the angles of attack and thus the 1ift
and drag results were correct at positive 1lift coefficients. Further
proof of this fact was obtained during the investigation of reference 3
from re-runs at several Mach numbers made in a manner to eliminate alto—
gether the effects of the excessive clearance. The drag data from those
tests (symmetrical about zero 1lift) agreed with those of the first series
of tests at positive 1lift coefficient, as did the angle of attack and
11ift and pltching-moment coefficients.

Balance.— As the model is pltched in the vertical plane in the
12-foot wind tumnel, the weight of the model produces a change in the
measured. forces and moments which, for the present tests, was signifi-
cant only for the chord—force measurements. The measured chord—force
tare had a small discontimity when the chord force reversed dlrection.
Since the same discontimulty was present in the uncorrected drag data,
these dats were corrected for thls lnherent characteristic of the meas—
uring system,
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RESULTS

The results are presented in this report withoult anslysis in order
to expedite publication. PFigure 3 shows the variation of 1ift coeffi—
cient with angle of attack and the variation of drag coefficlent,
pitching-moment coefficient, and lift-drag ratlc with 1ift coefficlent
at a Reynolds number of 1.5 million and at Mach numbers from 0.25 to
1.70. The effect of Reynolds mumber on the aerodynamic characteristics
at Mach mumbers of 0.25, 1.20 and 1.53 is shown in flgurse L, The
results presented in figure 3 have been summarized in figure 5 to show
some important parameters as functions of Mach number. The slope param—
eters in this figure have been measured at zero 1ift,

Ames Aeronautical Iaboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif,
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TABLE IZ

COORDINATES FOR TWISTED AND CAMBERED TRTANGULAR WING OF ASPECT RATIO 4
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( iy 021) Station 2.210 Statlon 3.500 Btatian 4.250 Station 5,100
x £ Iy g X, I Ty &y ¥, I I . T I
0.000 0.000 | 0.000 0,127 0.000 0.127 | 0.000 0.195 0,000 0.196 | 0.000 0.2k 0.000 0,24k | 0.000 0.293 0.000
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B.500 .37 7.3{ Ik 7.3'9':1 - 6.80g .3 6.79% —.2k3 | 6. 381 6.3&2 ~,15% 5.5?3 509 5.2;2
n.eo .323 | 3.876 .po3 8. ~259 | 8,162,302 B.55 -k | 7.6%2 .37 7.6hh -85 3.13 M7
11.900 260 m.g:su 23k 10.351 —.218 | 9,521 .2 9.916 -.1TL | B.27 .258 6B.520 ~,133 332 286 8.
13.600 186 |11.833 .167 1..B30 -.15% {0,881 178 10.877 -.120 |10.201 .193 10.196 -0 9,920 .00 9.5\8
15.300 103 1?.31.1 02 13.300 —.087 |1e.pho  .10% 12,238 —.0%9 |11k .12 1.b73 -.030 |20.709 .1A9 10.706
18.1% .09 jlhosd o;m o7 048 (12000 088 12,908 —.027 |12.1E0 .08 1R.138 o 11,30k HE ug
1T.000 ,009 |1:.789 .008 1h.789 —.008 [13.599 .0p5 13.999 -.011 |12.788 .ohT 12.7h8 033 u.& OTh 11,
I-enﬂ-1-ns-«=<leem5 Loading—edge rodius: 0.050 | Leading-edge radius: 0,037 { Lesding-edge radiue: 0.035 Loadins-edge radl
radins: 0.0
Staticz 6.800 Btation 8,700 Statlon 10.£00 Btation 12,750 Btation 14.87%
Xy | Xr, Z Xy Iy I, 2, Xy Zg I I Iy 2y I, | & I 1,
0.000 0.391 0,000 0,351{0.000 0.%85 0,000 0.%39]0.000 0,587 0.000 0.%87]0.000 0.733 0.000 0.733] 0.000 0.856 -,
31 127 .333] .10h 5T6 w01 o] 086 . . ool Lok LT82 Loml L713| W0m5 BB BhE
L5 253 38| .ok 62k o0 h3k Jaﬁ grzk Jdo . 096 B3 02 70| L0500 .85 Bk
% .528 gga .l;mag .681 ga; m . 7736 .3£ .538| .15 .ggs .20 .'_;uig ) 11% '3&?. g;li
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l.o88 ,688 1.0 .200] 057 g L gl 682 B9 60 ,Eg ﬁ: N .,] ﬁ TL7l Le0b 937 R,
1.589 ,733 1.%8 .B0f 1.283 .80 1.2k |, A2 1,00 .-ggof .80 647 .TR9| 311 958 863
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3.069 .7 3.007 .2W5|e.Pe  .B55 2549 b0 2,08 .ger ok . 1.B63 .9 1273 . 527 1.002
5.087 .65 4,076 .160 Euog 1 Euoo m 2,7k 93k p.TRO 1.687 1.007 1.608 .Bol| .B838 1l.oe2
5,105  .530 5,005 .08z h.25% 799 k0% ghok 92k Em 624 | 2,113 1,019 2,123 1,0% 1.02'.!
6.123 ,Mig9 6,11k ,06L| 5.106 .62 *. .347 | ko83 ﬁe 8L  .633[2.938 L.0er 2,5h7 LO%9| L.2fR 1,
7.1k ,3th 7,13k .063 5.23 Sh3 5. 200 [k, 763 843 B,761 636 2.964 1.019 2,970 .809| LAT6 1,055
8,160 .03 8,155 .08l M 6797 .eek |5k .7 5.AML ,6B%[3.390 1,009 3.395 .96 1.688 1,061
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Lasding-edge redius: 0,028 | Leading—odge radive: 0.083 | Lendivg-odge radins: 0,019 | Teading-edge redius; 0.012 | Teading-edge redive:

1Xoomticns of stations are msapured in inches from plare of symmetry.
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